REMORA
Regional Modeling of Oceans Refined Adaptively
Loading...
Searching...
No Matches
REMORA_setup_step.cpp
Go to the documentation of this file.
1#include <REMORA.H>
2
3using namespace amrex;
4
5/**
6 * @param[in ] lev level to operate on
7 * @param[in ] time time at start of step
8 * @param[in ] dt_lev time step at level
9 */
10void
11REMORA::setup_step (int lev, Real time, Real dt_lev)
12{
13 BL_PROFILE("REMORA::setup_step()");
14
15 MultiFab& S_old = *cons_old[lev];
16 MultiFab& S_new = *cons_new[lev];
17
18 MultiFab& U_old = *xvel_old[lev];
19 MultiFab& V_old = *yvel_old[lev];
20 MultiFab& W_old = *zvel_old[lev];
21
22 MultiFab& U_new = *xvel_new[lev];
23 MultiFab& V_new = *yvel_new[lev];
24 MultiFab& W_new = *zvel_new[lev];
25
26 int nvars = S_old.nComp();
27
28 // Fill ghost cells/faces at old time
29 FillPatchNoBC(lev, time, *cons_old[lev], cons_old, BdyVars::t);
30 FillPatchNoBC(lev, time, *xvel_old[lev], xvel_old, BdyVars::u);
31 FillPatchNoBC(lev, time, *yvel_old[lev], yvel_old, BdyVars::v);
33
34 ////////// //pre_step3d corrections to boundaries
35
36 const BoxArray& ba = S_old.boxArray();
37 const DistributionMapping& dm = S_old.DistributionMap();
38
39 const int nrhs = 0;
40 int nstp = 0;
41
42 //-----------------------------------------------------------------------
43 // Time step momentum equation
44 //-----------------------------------------------------------------------
45
46 //Only used locally, probably should be rearranged into FArrayBox declaration
47
48 MultiFab mf_DC(ba,dm,1,IntVect(NGROW,NGROW,NGROW-1)); //2d missing j coordinate
49 MultiFab mf_logdrg_tmp(ba,dm,1,IntVect(NGROW,NGROW,0));
50 MultiFab mf_rho(ba,dm,1,IntVect(NGROW,NGROW,0));
51
52 MultiFab* mf_z_r = vec_z_r[lev].get();
53 MultiFab* mf_z_w = vec_z_w[lev].get();
54 MultiFab* mf_h = vec_hOfTheConfusingName[lev].get();
55 MultiFab* mf_pm = vec_pm[lev].get();
56 MultiFab* mf_pn = vec_pn[lev].get();
57 MultiFab* mf_fcor = vec_fcor[lev].get();
58
59 MultiFab* mf_gls = vec_gls[lev].get();
60 MultiFab* mf_tke = vec_tke[lev].get();
61
62 //Consider passing these into the advance function or renaming relevant things
63
64 std::unique_ptr<MultiFab>& mf_rhoS = vec_rhoS[lev];
65 std::unique_ptr<MultiFab>& mf_rhoA = vec_rhoA[lev];
66 std::unique_ptr<MultiFab>& mf_bvf = vec_bvf[lev];
67 std::unique_ptr<MultiFab>& mf_ru = vec_ru[lev];
68 std::unique_ptr<MultiFab>& mf_rv = vec_rv[lev];
69 std::unique_ptr<MultiFab>& mf_rufrc = vec_rufrc[lev];
70 std::unique_ptr<MultiFab>& mf_rvfrc = vec_rvfrc[lev];
71 std::unique_ptr<MultiFab>& mf_sustr = vec_sustr[lev];
72 std::unique_ptr<MultiFab>& mf_svstr = vec_svstr[lev];
73 std::unique_ptr<MultiFab>& mf_rdrag = vec_rdrag[lev];
74 std::unique_ptr<MultiFab>& mf_rdrag2 = vec_rdrag2[lev];
75 std::unique_ptr<MultiFab>& mf_ZoBot = vec_ZoBot[lev];
76 std::unique_ptr<MultiFab>& mf_bustr = vec_bustr[lev];
77 std::unique_ptr<MultiFab>& mf_bvstr = vec_bvstr[lev];
78
79 std::unique_ptr<MultiFab>& mf_mskr = vec_mskr[lev];
80 std::unique_ptr<MultiFab>& mf_msku = vec_msku[lev];
81 std::unique_ptr<MultiFab>& mf_mskv = vec_mskv[lev];
82 std::unique_ptr<MultiFab>& mf_mskp = vec_mskp[lev];
83
84 std::unique_ptr<MultiFab>& mf_visc2_p = vec_visc2_p[lev];
85 std::unique_ptr<MultiFab>& mf_visc2_r = vec_visc2_r[lev];
86
87 // We need to set these because otherwise in the first call to remora_advance we may
88 // read uninitialized data on ghost values in setting the bc's on the velocities
89 mf_rho.setVal(0.e34_rt,IntVect(AMREX_D_DECL(NGROW-1,NGROW-1,0)));
90 mf_rhoS->setVal(0.e34_rt,IntVect(AMREX_D_DECL(NGROW-1,NGROW-1,0)));
91 mf_rhoA->setVal(0.e34_rt,IntVect(AMREX_D_DECL(NGROW-1,NGROW-1,0)));
92 mf_DC.setVal(0);
93
94 FillPatchNoBC(lev, time, *cons_new[lev], cons_new, BdyVars::t);
95 FillPatchNoBC(lev, time, *xvel_new[lev], xvel_new, BdyVars::u);
96 FillPatchNoBC(lev, time, *yvel_new[lev], yvel_new, BdyVars::v);
97
98 mf_rufrc->setVal(0);
99 mf_rvfrc->setVal(0);
100
101 int iic = istep[lev];
102 int ntfirst = 0;
103 if(iic==ntfirst) {
104 MultiFab::Copy(S_new,S_old,0,0,S_new.nComp(),S_new.nGrowVect());
105 MultiFab::Copy(U_new,U_old,0,0,U_new.nComp(),U_new.nGrowVect());
106 MultiFab::Copy(V_new,V_old,0,0,V_new.nComp(),V_new.nGrowVect());
107 MultiFab::Copy(W_new,W_old,0,0,W_new.nComp(),W_new.nGrowVect());
108 }
109
110 // If we're not doing bulk fluxes, set surface momentum fluxes directly.
111 // Otherwise, calculate them from winds, so those need to be set
113 set_smflux(lev);
114 } else {
115 set_wind(lev);
116 }
117
118 auto N = Geom(lev).Domain().size()[2]-1; // Number of vertical "levs" aka, NZ
119
120 const auto dlo = amrex::lbound(Geom(lev).Domain());
121 const auto dhi = amrex::ubound(Geom(lev).Domain());
122
123 for ( MFIter mfi(S_new, TilingIfNotGPU()); mfi.isValid(); ++mfi )
124 {
125 Array4<Real const> const& h = vec_hOfTheConfusingName[lev]->const_array(mfi);
126 Array4<Real const> const& Hz = vec_Hz[lev]->const_array(mfi);
127 Array4<Real > const& Huon = vec_Huon[lev]->array(mfi);
128 Array4<Real > const& Hvom = vec_Hvom[lev]->array(mfi);
129
130 Array4<Real const> const& z_w = mf_z_w->const_array(mfi);
131 Array4<Real const> const& z_r = mf_z_r->const_array(mfi);
132 Array4<Real const> const& uold = U_old.const_array(mfi);
133 Array4<Real const> const& vold = V_old.const_array(mfi);
134 Array4<Real > const& rho = mf_rho.array(mfi);
135 Array4<Real > const& rhoA = mf_rhoA->array(mfi);
136 Array4<Real > const& rhoS = mf_rhoS->array(mfi);
137 Array4<Real > const& bvf = mf_bvf->array(mfi);
138 Array4<Real > const& alpha = (solverChoice.bulk_fluxes) ? vec_alpha[lev]->array(mfi) : Array4<Real>();
139 Array4<Real > const& beta = (solverChoice.bulk_fluxes) ? vec_beta[lev]->array(mfi) : Array4<Real>();
140
141 Array4<Real const> const& pm = mf_pm->const_array(mfi);
142 Array4<Real const> const& pn = mf_pn->const_array(mfi);
143
144 Array4<Real const> const& mskr = mf_mskr->const_array(mfi);
145
146 Box bx = mfi.tilebox();
147 Box gbx1 = mfi.growntilebox(IntVect(NGROW-1,NGROW-1,0));
148 Box gbx2 = mfi.growntilebox(IntVect(NGROW,NGROW,0));
149 Box ugbx2 = mfi.grownnodaltilebox(0,IntVect(NGROW,NGROW,0));
150 Box vgbx2 = mfi.grownnodaltilebox(1,IntVect(NGROW,NGROW,0));
151
152 Box bxD = bx;
153 bxD.makeSlab(2,0);
154 Box gbx1D = gbx1;
155 gbx1D.makeSlab(2,0);
156 Box gbx2D = gbx2;
157 gbx2D.makeSlab(2,0);
158
159 //
160 //-----------------------------------------------------------------------
161 // Compute horizontal mass fluxes, Hz*u/n and Hz*v/m (set_massflux_3d)
162 //-----------------------------------------------------------------------
163 //
164 ParallelFor(ugbx2, [=] AMREX_GPU_DEVICE (int i, int j, int k)
165 {
166 Real on_u = 2.0_rt / (pn(i-1,j,0)+pn(i,j,0));
167 Huon(i,j,k)=0.5_rt*(Hz(i,j,k)+Hz(i-1,j,k))*uold(i,j,k)* on_u;
168 });
169
170 ParallelFor(vgbx2, [=] AMREX_GPU_DEVICE (int i, int j, int k)
171 {
172 Real om_v= 2.0_rt / (pm(i,j-1,0)+pm(i,j,0));
173 Hvom(i,j,k)=0.5_rt*(Hz(i,j,k)+Hz(i,j-1,k))*vold(i,j,k)* om_v;
174 });
175
176 Array4<Real const> const& state_old = S_old.const_array(mfi);
177 rho_eos(gbx2,state_old,rho,rhoA,rhoS,bvf,alpha,beta,Hz,z_w,z_r,h,mskr,N);
178 }
179
180 const Real Cdb_min = solverChoice.Cdb_min;
181 const Real Cdb_max = solverChoice.Cdb_max;
182
184 bulk_fluxes(lev, cons_old[lev],vec_uwind[lev].get(),vec_vwind[lev].get(),
185 vec_evap[lev].get(),
186 vec_sustr[lev].get(),vec_svstr[lev].get(),vec_stflux[lev].get(),
187 vec_lrflx[lev].get(),vec_lhflx[lev].get(),vec_shflx[lev].get(),N);
188 vec_evap[lev]->FillBoundary(geom[lev].periodicity());
189 }
190
192 for ( MFIter mfi(S_new, TilingIfNotGPU()); mfi.isValid(); ++mfi )
193 {
194 Array4<Real > const& stflx = vec_stflx[lev]->array(mfi);
195 Array4<Real > const& btflx = vec_btflx[lev]->array(mfi);
196 Array4<Real const> const& stflux = vec_stflux[lev]->array(mfi);
197 Array4<Real const> const& btflux = vec_btflux[lev]->array(mfi);
198 Box gbx2 = mfi.growntilebox(IntVect(NGROW,NGROW,0));
199 Box gbx2D = gbx2;
200 gbx2D.makeSlab(2,0);
201 ParallelFor(gbx2D, [=] AMREX_GPU_DEVICE (int i, int j, int ) {
202 stflx(i,j,0,Temp_comp) = stflux(i,j,0,Temp_comp);
203 btflx(i,j,0,Temp_comp) = btflux(i,j,0,Temp_comp);
204 });
205 }
206 }
208 for ( MFIter mfi(S_new, TilingIfNotGPU()); mfi.isValid(); ++mfi )
209 {
210 Array4<Real > const& stflx = vec_stflx[lev]->array(mfi);
211 Array4<Real > const& btflx = vec_btflx[lev]->array(mfi);
212 Array4<Real const> const& stflux = vec_stflux[lev]->const_array(mfi);
213 Array4<Real const> const& salt_old = S_old.const_array(mfi,Salt_comp);
214 Box gbx2 = mfi.growntilebox(IntVect(NGROW,NGROW,0));
215 Box gbx2D = gbx2;
216 gbx2D.makeSlab(2,0);
217 ParallelFor(gbx2D, [=] AMREX_GPU_DEVICE (int i, int j, int ) {
218 stflx(i,j,0,Salt_comp) = stflux(i,j,0,Salt_comp) * salt_old(i,j,N);
219 // The fact that this is btflx on the RHS matches what's in ROMS even though
220 // it's weird -- if it's non-zero, does that mean that it will run away since
221 // it's always getting multiplied by salt?
222 btflx(i,j,0,Salt_comp) = btflx(i,j,0,Salt_comp) * salt_old(i,j,0);
223 });
224 }
225 }
226
227 for ( MFIter mfi(S_new, TilingIfNotGPU()); mfi.isValid(); ++mfi )
228 {
229 Array4<Real > const& bustr = mf_bustr->array(mfi);
230 Array4<Real > const& bvstr = mf_bvstr->array(mfi);
231 Array4<Real const> const& uold = U_old.const_array(mfi);
232 Array4<Real const> const& vold = V_old.const_array(mfi);
233 Array4<Real > const& logdrg_tmp = mf_logdrg_tmp.array(mfi);
234 Array4<Real const> const& z_r = mf_z_r->const_array(mfi);
235 Array4<Real const> const& z_w = mf_z_w->const_array(mfi);
236
237 Box gbx2 = mfi.growntilebox(IntVect(NGROW,NGROW,0));
238 Box gbx2D = gbx2;
239 gbx2D.makeSlab(2,0);
240 Box ubx1 = mfi.grownnodaltilebox(0,IntVect(NGROW-1,NGROW-1,0));
241 Box ubx1D = ubx1;
242 ubx1D.makeSlab(2,0);
243 Box vbx1 = mfi.grownnodaltilebox(1,IntVect(NGROW-1,NGROW-1,0));
244 Box vbx1D = vbx1;
245 vbx1D.makeSlab(2,0);
246 // Set bottom stress as defined in set_vbx.F
248 Array4<Real const> const& rdrag = mf_rdrag->const_array(mfi);
249 ParallelFor(ubx1D, [=] AMREX_GPU_DEVICE (int i, int j, int )
250 {
251 bustr(i,j,0) = 0.5_rt * (rdrag(i-1,j,0)+rdrag(i,j,0))*(uold(i,j,0));
252 });
253 ParallelFor(vbx1D, [=] AMREX_GPU_DEVICE (int i, int j, int )
254 {
255 bvstr(i,j,0) = 0.5_rt * (rdrag(i,j-1,0)+rdrag(i,j,0))*(vold(i,j,0));
256 });
258 Array4<Real const> const& rdrag2 = mf_rdrag2->const_array(mfi);
259 ParallelFor(ubx1D, [=] AMREX_GPU_DEVICE (int i, int j, int )
260 {
261 Real avg_v = 0.25_rt * (vold(i,j,0) + vold(i,j+1,0) + vold(i-1,j,0) + vold(i-1,j+1,0));
262 Real vel_mag = std::sqrt(uold(i,j,0)*uold(i,j,0) + avg_v * avg_v);
263 bustr(i,j,0) = 0.5_rt * (rdrag2(i-1,j,0) + rdrag2(i,j,0)) * uold(i,j,0) * vel_mag;
264 });
265 ParallelFor(vbx1D, [=] AMREX_GPU_DEVICE (int i, int j, int )
266 {
267 Real avg_u = 0.25_rt * (uold(i,j,0) + uold(i+1,j,0) + uold(i,j-1,0) + uold(i+1,j-1,0));
268 Real vel_mag = std::sqrt(avg_u * avg_u + vold(i,j,0) * vold(i,j,0));
269 bvstr(i,j,0) = 0.5_rt * (rdrag2(i,j-1,0) + rdrag2(i,j,0)) * vold(i,j,0) * vel_mag;
270 });
272 Array4<Real const> const& ZoBot = mf_ZoBot->const_array(mfi);
273 ParallelFor(gbx2D, [=] AMREX_GPU_DEVICE (int i, int j, int )
274 {
275 Real logz = 1.0_rt / (std::log((z_r(i,j,0) - z_w(i,j,0)) / ZoBot(i,j,0)));
276 Real cff = vonKar * vonKar * logz * logz;
277 logdrg_tmp(i,j,0) = std::min(Cdb_max,std::max(Cdb_min,cff));
278 });
279 ParallelFor(ubx1D, [=] AMREX_GPU_DEVICE (int i, int j, int )
280 {
281 Real avg_v = 0.25_rt * (vold(i,j,0) + vold(i,j+1,0) + vold(i-1,j,0) + vold(i-1,j+1,0));
282 Real vel_mag = std::sqrt(uold(i,j,0)*uold(i,j,0) + avg_v * avg_v);
283 bustr(i,j,0) = 0.5_rt * (logdrg_tmp(i-1,j,0)+logdrg_tmp(i,j,0)) * uold(i,j,0) * vel_mag;
284 });
285 ParallelFor(vbx1D, [=] AMREX_GPU_DEVICE (int i, int j, int )
286 {
287 Real avg_u = 0.25_rt * (uold(i,j,0) + uold(i+1,j,0) + uold(i,j-1,0) + uold(i+1,j-1,0));
288 Real vel_mag = std::sqrt(avg_u * avg_u + vold(i,j,0) * vold(i,j,0));
289 bvstr(i,j,0) = 0.5_rt * (logdrg_tmp(i,j-1,0) + logdrg_tmp(i,j,0)) * vold(i,j,0) * vel_mag;
290 });
291 }
292 }
293 FillPatch(lev, time, *vec_bustr[lev].get(), GetVecOfPtrs(vec_bustr), BCVars::u2d_simple_bc, BdyVars::null,0,true,false);
294 FillPatch(lev, time, *vec_bvstr[lev].get(), GetVecOfPtrs(vec_bvstr), BCVars::v2d_simple_bc, BdyVars::null,0,true,false);
295
297 // Update Akv if using analytic mixing
299 }
300
302
303 MultiFab mf_W(convert(ba,IntVect(0,0,1)),dm,1,IntVect(NGROW+1,NGROW+1,0));
304 mf_W.setVal(0.0_rt);
305
306
308 const int nnew = 0;
309 prestep(lev, U_old, V_old, U_new, V_new,
310 mf_ru.get(), mf_rv.get(),
311 S_old, S_new, mf_W,
312 mf_DC, mf_z_r, mf_z_w, mf_h, mf_pm, mf_pn,
313 mf_sustr.get(), mf_svstr.get(), mf_bustr.get(), mf_bvstr.get(),
314 mf_msku.get(), mf_mskv.get(),
315 iic, ntfirst, nnew, nstp, nrhs, N, dt_lev);
316 }
317
318 // We use FillBoundary not FillPatch here since mf_W is single-level scratch space
319 mf_W.FillBoundary(geom[lev].periodicity());
320 (*physbcs[lev])(mf_W,*mf_mskr.get(),0,1,mf_W.nGrowVect(),t_new[lev],BCVars::zvel_bc);
321
322#ifdef REMORA_USE_NETCDF
323 // Get u and v climatology if we're going to do nudging
327 }
328#endif
329
330 for ( MFIter mfi(S_old, TilingIfNotGPU()); mfi.isValid(); ++mfi )
331 {
332 Array4<Real const> const& Hz = vec_Hz[lev]->const_array(mfi);
333 Array4<Real> const& Huon = vec_Huon[lev]->array(mfi);
334 Array4<Real> const& Hvom = vec_Hvom[lev]->array(mfi);
335 Array4<Real> const& z_r = (mf_z_r)->array(mfi);
336 Array4<Real> const& z_w = (mf_z_w)->array(mfi);
337 Array4<Real const> const& uold = U_old.const_array(mfi);
338 Array4<Real const> const& vold = V_old.const_array(mfi);
339 Array4<Real> const& u = U_new.array(mfi);
340 Array4<Real> const& v = V_new.array(mfi);
341 Array4<Real> const& rho = (mf_rho).array(mfi);
342 Array4<Real> const& ru = (mf_ru)->array(mfi);
343 Array4<Real> const& rv = (mf_rv)->array(mfi);
344 Array4<Real> const& rufrc = (mf_rufrc)->array(mfi);
345 Array4<Real> const& rvfrc = (mf_rvfrc)->array(mfi);
346 Array4<Real> const& W = (mf_W).array(mfi);
347 Array4<Real> const& sustr = (mf_sustr)->array(mfi);
348 Array4<Real> const& svstr = (mf_svstr)->array(mfi);
349 Array4<Real> const& bustr = (mf_bustr)->array(mfi);
350 Array4<Real> const& bvstr = (mf_bvstr)->array(mfi);
351 Array4<Real> const& visc2_p = (mf_visc2_p)->array(mfi);
352 Array4<Real> const& visc2_r = (mf_visc2_r)->array(mfi);
353
354 Array4<Real const> const& pm = mf_pm->const_array(mfi);
355 Array4<Real const> const& pn = mf_pn->const_array(mfi);
356 Array4<Real const> const& fcor = mf_fcor->const_array(mfi);
357
358 Array4<Real const> const& msku = mf_msku->const_array(mfi);
359 Array4<Real const> const& mskv = mf_mskv->const_array(mfi);
360 Array4<Real const> const& mskp = mf_mskp->const_array(mfi);
361
362 Box bx = mfi.tilebox();
363
364 Box tbxp1 = bx;
365 Box tbxp2 = bx;
366 Box xbx = mfi.nodaltilebox(0);
367 Box ybx = mfi.nodaltilebox(1);
368 Box xbx_adj = mfi.nodaltilebox(0);
369 Box ybx_adj = mfi.nodaltilebox(1);
370
371 auto xbx_lo = lbound(xbx_adj);
372 auto xbx_hi = ubound(xbx_adj);
373 auto ybx_lo = lbound(ybx_adj);
374 auto ybx_hi = ubound(ybx_adj);
375
376 if (xbx_lo.x == dlo.x) {
377 xbx_adj.growLo(0,-1);
378 } else if (xbx_hi.x == dhi.x) {
379 xbx_adj.growHi(0,-1);
380 }
381
382 if (ybx_lo.y == dlo.y) {
383 ybx_adj.growLo(1,-1);
384 } else if (ybx_hi.y == dhi.y) {
385 ybx_adj.growHi(1,-1);
386 }
387
388 Box gbx1 = mfi.growntilebox(IntVect(NGROW-1,NGROW-1,0));
389 Box gbx2 = mfi.growntilebox(IntVect(NGROW,NGROW,0));
390
391 Box utbx = mfi.nodaltilebox(0);
392 Box vtbx = mfi.nodaltilebox(1);
393
394 tbxp1.grow(IntVect(NGROW-1,NGROW-1,0));
395 tbxp2.grow(IntVect(NGROW,NGROW,0));
396
397 Box bxD = bx;
398 bxD.makeSlab(2,0);
399 Box gbx1D = gbx1;
400 gbx1D.makeSlab(2,0);
401 Box gbx2D = gbx2;
402 gbx2D.makeSlab(2,0);
403
404 Box tbxp1D = tbxp1;
405 tbxp1D.makeSlab(2,0);
406 Box tbxp2D = tbxp2;
407 tbxp2D.makeSlab(2,0);
408
409 FArrayBox fab_FC(surroundingNodes(tbxp2,2),1,amrex::The_Async_Arena()); //3D
410 auto FC=fab_FC.array();
411
412 FArrayBox fab_fomn(tbxp2D,1,amrex::The_Async_Arena());
413 auto fomn=fab_fomn.array();
414
416 ParallelFor(tbxp2D, [=] AMREX_GPU_DEVICE (int i, int j, int )
417 {
418 fomn(i,j,0) = fcor(i,j,0)*(1.0_rt/(pm(i,j,0)*pn(i,j,0)));
419 });
420 }
421
422 ParallelFor(gbx2, [=] AMREX_GPU_DEVICE (int i, int j, int k)
423 {
424 FC(i,j,k)=0.0_rt;
425 });
426
427 prsgrd(tbxp1,gbx1,utbx,vtbx,ru,rv,pn,pm,rho,FC,Hz,z_r,z_w,msku,mskv,nrhs,N);
428
429 // Apply mixing to temperature and, if use_salt, salt
430 int ncomp = solverChoice.use_salt ? 2 : 1;
431 Array4<Real> const& s_arr = S_new.array(mfi);
432 Array4<Real> const& s_arr_rhs = S_old.array(mfi);
433 Array4<Real> const& diff2_arr = vec_diff2[lev]->array(mfi);
434
435 t3dmix(bx, s_arr, s_arr_rhs, diff2_arr, Hz, pm, pn, msku, mskv, dt_lev, ncomp);
436
437 Array4<Real> const& diff2_arr_scalar = vec_diff2[lev]->array(mfi,Scalar_comp);
438 t3dmix(bx, S_new.array(mfi,Scalar_comp), S_old.array(mfi,Scalar_comp), diff2_arr_scalar, Hz, pm, pn, msku, mskv, dt_lev, 1);
439
441 //-----------------------------------------------------------------------
442 // coriolis
443 //-----------------------------------------------------------------------
444 //
445 // ru, rv updated
446 // In ROMS, coriolis is the first (un-ifdefed) thing to happen in rhs3d_tile, which gets called after t3dmix
447 coriolis(xbx, ybx, uold, vold, ru, rv, Hz, fomn, nrhs, nrhs);
448 }
449
450#ifdef REMORA_USE_NETCDF
452 Array4<const Real> const& uclim = u_clim_data_from_file->mf_interpolated->const_array(mfi);
453 Array4<const Real> const& vclim = v_clim_data_from_file->mf_interpolated->const_array(mfi);
454 Array4<const Real> const& u_nudg_coeff = vec_nudg_coeff[BdyVars::u][lev]->const_array(mfi);
455 Array4<const Real> const& v_nudg_coeff = vec_nudg_coeff[BdyVars::v][lev]->const_array(mfi);
456 // These boxes are set to match ROMS
457 apply_clim_nudg(xbx_adj, 1, 0, ru, uold, uclim, u_nudg_coeff, Hz, pm, pn);
458 apply_clim_nudg(ybx_adj, 0, 1, rv, vold, vclim, v_nudg_coeff, Hz, pm, pn);
459 }
460#endif
461
462 ////rufrc from 3d is set to ru, then the wind stress (and bottom stress) is added, then the mixing is added
463 //rufrc=ru+sustr*om_u*on_u
464
465 rhs_uv_3d(lev, xbx, ybx, uold, vold, ru, rv, rufrc, rvfrc,
466 sustr, svstr, bustr, bvstr, Huon, Hvom,
467 pm, pn, W, FC, nrhs, N);
468
470 const int nnew = 0;
471 uv3dmix(xbx, ybx, u, v, uold, vold, rufrc, rvfrc, visc2_p, visc2_r, Hz, pm, pn, mskp, nrhs, nnew, dt_lev);
472 }
473 } // MFIter
474
475 int nnew = (iic +1)% 2;
476 nstp = iic % 2;
478 gls_prestep(lev, mf_gls, mf_tke, mf_W, mf_msku.get(), mf_mskv.get(),
479 nstp, nnew, iic, ntfirst, N, dt_lev);
480 }
481 nstp = 0;
482
483 // Commenting out for now, but not sure it's necessary
484 //FillPatch(lev, time, *cons_old[lev], cons_old, BCVars::cons_bc, BdyVars::t);
485 //FillPatch(lev, time, *cons_new[lev], cons_new, BCVars::cons_bc, BdyVars::t);
486 FillPatch(lev, time, *vec_sstore[lev], GetVecOfPtrs(vec_sstore), BCVars::cons_bc, BdyVars::t,0,true,true,0,0,dt_lev,*cons_old[lev]);
487
488 // Don't actually want to apply boundary conditions here
489 vec_Huon[lev]->FillBoundary(geom[lev].periodicity());
490 vec_Hvom[lev]->FillBoundary(geom[lev].periodicity());
491}
constexpr amrex::Real vonKar
#define NGROW
#define Temp_comp
#define Scalar_comp
#define Salt_comp
amrex::MultiFab * mf_interpolated
void update_interpolated_to_time(amrex::Real time)
Calculate interpolated values at time, reading in data as necessary.
void prsgrd(const amrex::Box &bx, const amrex::Box &gbx, const amrex::Box &utbx, const amrex::Box &vtbx, const amrex::Array4< amrex::Real > &ru, const amrex::Array4< amrex::Real > &rv, const amrex::Array4< amrex::Real const > &pn, const amrex::Array4< amrex::Real const > &pm, const amrex::Array4< amrex::Real const > &rho, const amrex::Array4< amrex::Real > &FC, const amrex::Array4< amrex::Real const > &Hz, const amrex::Array4< amrex::Real const > &z_r, const amrex::Array4< amrex::Real const > &z_w, const amrex::Array4< amrex::Real const > &msku, const amrex::Array4< amrex::Real const > &mskv, const int nrhs, const int N)
Calculate pressure gradient.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_evap
evaporation rate [kg/m^2/s]
Definition REMORA.H:321
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_fcor
coriolis factor (2D)
Definition REMORA.H:371
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_btflux
Bottom tracer flux; input arrays.
Definition REMORA.H:316
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_hOfTheConfusingName
Bathymetry data (2D, positive valued, h in ROMS)
Definition REMORA.H:235
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_pm
horizontal scaling factor: 1 / dx (2D)
Definition REMORA.H:366
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_ZoBot
Bottom roughness length [m], defined at rho points.
Definition REMORA.H:328
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_lrflx
longwave radiation
Definition REMORA.H:303
amrex::Vector< amrex::MultiFab * > cons_new
multilevel data container for current step's scalar data: temperature, salinity, passive scalar
Definition REMORA.H:223
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_vwind
Wind in the v direction, defined at rho-points.
Definition REMORA.H:300
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_mskr
land/sea mask at cell centers (2D)
Definition REMORA.H:357
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_tke
Turbulent kinetic energy.
Definition REMORA.H:414
void rho_eos(const amrex::Box &bx, const amrex::Array4< amrex::Real const > &state, const amrex::Array4< amrex::Real > &rho, const amrex::Array4< amrex::Real > &rhoA, const amrex::Array4< amrex::Real > &rhoS, const amrex::Array4< amrex::Real > &bvf, const amrex::Array4< amrex::Real > &alpha, const amrex::Array4< amrex::Real > &beta, const amrex::Array4< amrex::Real const > &Hz, const amrex::Array4< amrex::Real const > &z_w, const amrex::Array4< amrex::Real const > &z_r, const amrex::Array4< amrex::Real const > &h, const amrex::Array4< amrex::Real const > &mskr, const int N)
Wrapper around equation of state calculation.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_stflx
Surface tracer flux; working arrays.
Definition REMORA.H:310
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_gls
Turbulent generic length scale.
Definition REMORA.H:416
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_sustr
Surface stress in the u direction.
Definition REMORA.H:293
NCTimeSeries * v_clim_data_from_file
Data container for v-velocity climatology data read from file.
Definition REMORA.H:1080
amrex::Vector< amrex::MultiFab * > zvel_new
multilevel data container for current step's z velocities (largely unused; W stored separately)
Definition REMORA.H:229
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_sstore
additional scratch space for calculations on temp, salt, etc
Definition REMORA.H:394
void rhs_uv_3d(int lev, const amrex::Box &xbx, const amrex::Box &ybx, const amrex::Array4< amrex::Real const > &uold, const amrex::Array4< amrex::Real const > &vold, const amrex::Array4< amrex::Real > &ru, const amrex::Array4< amrex::Real > &rv, const amrex::Array4< amrex::Real > &rufrc, const amrex::Array4< amrex::Real > &rvfrc, const amrex::Array4< amrex::Real const > &sustr, const amrex::Array4< amrex::Real const > &svstr, const amrex::Array4< amrex::Real const > &bustr, const amrex::Array4< amrex::Real const > &bvstr, const amrex::Array4< amrex::Real const > &Huon, const amrex::Array4< amrex::Real const > &Hvom, const amrex::Array4< amrex::Real const > &pm, const amrex::Array4< amrex::Real const > &pn, const amrex::Array4< amrex::Real const > &W, const amrex::Array4< amrex::Real > &FC, int nrhs, int N)
RHS terms for 3D momentum.
void t3dmix(const amrex::Box &bx, const amrex::Array4< amrex::Real > &state, const amrex::Array4< amrex::Real > &state_rhs, const amrex::Array4< amrex::Real const > &diff2, const amrex::Array4< amrex::Real const > &Hz, const amrex::Array4< amrex::Real const > &pm, const amrex::Array4< amrex::Real const > &pn, const amrex::Array4< amrex::Real const > &msku, const amrex::Array4< amrex::Real const > &mskv, const amrex::Real dt_lev, const int ncomp)
Harmonic diffusivity for tracers.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_Hz
Width of cells in the vertical (z-) direction (3D, Hz in ROMS)
Definition REMORA.H:238
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_msku
land/sea mask at x-faces (2D)
Definition REMORA.H:359
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_rvfrc
v velocity RHS, integrated, including advection and bottom/surface stresses (2D)
Definition REMORA.H:254
void FillPatchNoBC(int lev, amrex::Real time, amrex::MultiFab &mf_to_be_filled, amrex::Vector< amrex::MultiFab * > const &mfs, const int bdy_var_type=BdyVars::null, const int icomp=0, const bool fill_all=true, const bool fill_set=true)
Fill a new MultiFab by copying in phi from valid region and filling ghost cells without applying boun...
NCTimeSeries * u_clim_data_from_file
Data container for u-velocity climatology data read from file.
Definition REMORA.H:1078
amrex::Vector< amrex::MultiFab * > xvel_old
multilevel data container for last step's x velocities (u in ROMS)
Definition REMORA.H:216
amrex::Vector< amrex::MultiFab * > yvel_new
multilevel data container for current step's y velocities (v in ROMS)
Definition REMORA.H:227
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_uwind
Wind in the u direction, defined at rho-points.
Definition REMORA.H:298
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_rufrc
u velocity RHS, integrated, including advection and bottom/surface stresses (2D)
Definition REMORA.H:252
void gls_prestep(int lev, amrex::MultiFab *mf_gls, amrex::MultiFab *mf_tke, amrex::MultiFab &mf_W, amrex::MultiFab *mf_msku, amrex::MultiFab *mf_mskv, const int nstp, const int nnew, const int iic, const int ntfirst, const int N, const amrex::Real dt_lev)
Prestep for GLS calculation.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_shflx
sensible heat flux
Definition REMORA.H:307
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_visc2_p
Harmonic viscosity defined on the psi points (corners of horizontal grid cells)
Definition REMORA.H:260
amrex::Vector< amrex::MultiFab * > zvel_old
multilevel data container for last step's z velocities (largely unused; W stored separately)
Definition REMORA.H:220
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_z_r
z coordinates at rho points (cell centers)
Definition REMORA.H:267
amrex::Vector< amrex::MultiFab * > xvel_new
multilevel data container for current step's x velocities (u in ROMS)
Definition REMORA.H:225
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_lhflx
latent heat flux
Definition REMORA.H:305
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_mskp
land/sea mask at cell corners (2D)
Definition REMORA.H:363
void prestep(int lev, amrex::MultiFab &mf_uold, amrex::MultiFab &mf_vold, amrex::MultiFab &mf_u, amrex::MultiFab &mf_v, amrex::MultiFab *mf_ru, amrex::MultiFab *mf_rv, amrex::MultiFab &S_old, amrex::MultiFab &S_new, amrex::MultiFab &mf_W, amrex::MultiFab &mf_DC, const amrex::MultiFab *mf_z_r, const amrex::MultiFab *mf_z_w, const amrex::MultiFab *mf_h, const amrex::MultiFab *mf_pm, const amrex::MultiFab *mf_pn, const amrex::MultiFab *mf_sustr, const amrex::MultiFab *mf_svstr, const amrex::MultiFab *mf_bustr, const amrex::MultiFab *mf_bvstr, const amrex::MultiFab *mf_msku, const amrex::MultiFab *mf_mskv, const int iic, const int nfirst, const int nnew, int nstp, int nrhs, int N, const amrex::Real dt_lev)
Wrapper function for prestep.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_bvf
Brunt-Vaisala frequency (3D)
Definition REMORA.H:401
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_mskv
land/sea mask at y-faces (2D)
Definition REMORA.H:361
amrex::Vector< std::unique_ptr< REMORAPhysBCFunct > > physbcs
Vector (over level) of functors to apply physical boundary conditions.
Definition REMORA.H:1166
void FillPatch(int lev, amrex::Real time, amrex::MultiFab &mf_to_be_filled, amrex::Vector< amrex::MultiFab * > const &mfs, const int bccomp, const int bdy_var_type=BdyVars::null, const int icomp=0, const bool fill_all=true, const bool fill_set=true, const int n_not_fill=0, const int icomp_calc=0, const amrex::Real dt=amrex::Real(0.0), const amrex::MultiFab &mf_calc=amrex::MultiFab())
Fill a new MultiFab by copying in phi from valid region and filling ghost cells.
amrex::Vector< int > istep
which step?
Definition REMORA.H:1152
void apply_clim_nudg(const amrex::Box &bx, int ioff, int joff, const amrex::Array4< amrex::Real > &var, const amrex::Array4< amrex::Real const > &var_old, const amrex::Array4< amrex::Real const > &var_clim, const amrex::Array4< amrex::Real const > &clim_coeff, const amrex::Array4< amrex::Real const > &Hz, const amrex::Array4< amrex::Real const > &pm, const amrex::Array4< amrex::Real const > &pn, const amrex::Real dt_lev=amrex::Real(0.0))
Apply climatology nudging.
void uv3dmix(const amrex::Box &xbx, const amrex::Box &ybx, const amrex::Array4< amrex::Real > &u, const amrex::Array4< amrex::Real > &v, const amrex::Array4< amrex::Real const > &uold, const amrex::Array4< amrex::Real const > &vold, const amrex::Array4< amrex::Real > &rufrc, const amrex::Array4< amrex::Real > &rvfrc, const amrex::Array4< amrex::Real const > &visc2_p, const amrex::Array4< amrex::Real const > &visc2_r, const amrex::Array4< amrex::Real const > &Hz, const amrex::Array4< amrex::Real const > &pm, const amrex::Array4< amrex::Real const > &pn, const amrex::Array4< amrex::Real const > &mskp, int nrhs, int nnew, const amrex::Real dt_lev)
Harmonic viscosity.
void set_analytic_vmix(int lev)
Set vertical mixing coefficients from analytic.
Definition REMORA.cpp:632
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_rhoS
density perturbation
Definition REMORA.H:397
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_visc2_r
Harmonic viscosity defined on the rho points (centers)
Definition REMORA.H:262
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_svstr
Surface stress in the v direction.
Definition REMORA.H:295
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_Huon
u-volume flux (3D)
Definition REMORA.H:240
void bulk_fluxes(int lev, amrex::MultiFab *mf_cons, amrex::MultiFab *mf_uwind, amrex::MultiFab *mf_vwind, amrex::MultiFab *mf_evap, amrex::MultiFab *mf_sustr, amrex::MultiFab *mf_svstr, amrex::MultiFab *mf_stflux, amrex::MultiFab *mf_lrflx, amrex::MultiFab *mf_lhflx, amrex::MultiFab *mf_shflx, const int N)
Calculate bulk temperature, salinity, wind fluxes.
amrex::Vector< amrex::MultiFab * > yvel_old
multilevel data container for last step's y velocities (v in ROMS)
Definition REMORA.H:218
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_rhoA
vertically-averaged density
Definition REMORA.H:399
amrex::Vector< amrex::Real > t_new
new time at each level
Definition REMORA.H:1156
static SolverChoice solverChoice
Container for algorithmic choices.
Definition REMORA.H:1279
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_rdrag2
Quadratic drag coefficient [unitless], defined at rho points.
Definition REMORA.H:326
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_ru
u velocity RHS (3D, includes horizontal and vertical advection)
Definition REMORA.H:244
void set_zeta_to_Ztavg(int lev)
Set zeta components to be equal to time-averaged Zt_avg1.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_alpha
Thermal expansion coefficient (3D)
Definition REMORA.H:403
amrex::Vector< amrex::MultiFab * > cons_old
multilevel data container for last step's scalar data: temperature, salinity, passive scalar
Definition REMORA.H:214
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_bustr
Bottom stress in the u direction.
Definition REMORA.H:331
void set_wind(int lev)
Initialize or calculate wind speed from file or analytic.
Definition REMORA.cpp:701
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_bvstr
Bottom stress in the v direction.
Definition REMORA.H:333
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > vec_nudg_coeff
Climatology nudging coefficients.
Definition REMORA.H:425
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_pn
horizontal scaling factor: 1 / dy (2D)
Definition REMORA.H:368
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_stflux
Surface tracer flux; input arrays.
Definition REMORA.H:312
void setup_step(int lev, amrex::Real time, amrex::Real dt_lev)
Set everything up for a step on a level.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_rdrag
Linear drag coefficient [m/s], defined at rho points.
Definition REMORA.H:324
void set_smflux(int lev)
Initialize or calculate surface momentum flux from file or analytic.
Definition REMORA.cpp:682
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_rv
v velocity RHS (3D, includes horizontal and vertical advection)
Definition REMORA.H:246
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_btflx
Bottom tracer flux; working arrays.
Definition REMORA.H:314
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_beta
Saline contraction coefficient (3D)
Definition REMORA.H:405
void coriolis(const amrex::Box &xbx, const amrex::Box &ybx, const amrex::Array4< amrex::Real const > &uold, const amrex::Array4< amrex::Real const > &vold, const amrex::Array4< amrex::Real > &ru, const amrex::Array4< amrex::Real > &rv, const amrex::Array4< amrex::Real const > &Hz, const amrex::Array4< amrex::Real const > &fomn, int nrhs, int nr)
Calculate Coriolis terms.
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_z_w
z coordinates at w points (faces between z-cells)
Definition REMORA.H:270
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_Hvom
v-volume flux (3D)
Definition REMORA.H:242
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vec_diff2
Harmonic diffusivity for temperature / salinity.
Definition REMORA.H:264
amrex::Real Cdb_min
BottomStressType bottom_stress_type
VertMixingType vert_mixing_type
amrex::Real Cdb_max